
Experts in numerical algorithms
and HPC services

NAG Toolbox for MATLAB and
NAG Library for Python

Viktor Mosenkis

June 2016

2

Agenda for NAG Toolbox for MATLAB

 The contents and how to use the NAG Toolbox for
MATLAB

 Functionality and Performance Comparison

 Aim to show how you can benefit from the NAG
Toolbox, and find appropriate help.

3

NAG Toolbox for MATLAB

 Root Finding

 Summation of Series

 Quadrature

 Ordinary Differential Equations

 Partial Differential Equations

 Numerical Differentiation

 Integral Equations

 Mesh Generation

 Interpolation

 Curve and Surface Fitting

 Optimization

 Approximations of Special
Functions

 Dense Linear Algebra

 Sparse Linear Algebra

 Correlation and Regression
Analysis

 Multivariate Analysis of
Variance

 Random Number Generators

 Univariate Estimation

 Nonparametric Statistics

 Smoothing in Statistics

 Contingency Table Analysis

 Survival Analysis

 Time Series Analysis

 Operations Research

4

NAG Toolbox for MATLAB

 Mark 24 of NAG Toolbox for MATLAB out now.

 New content in areas of:

 Global Optimization

 Image processing

 Dense Linear Algebra

 Sparse Linear Algebra

 Nearest Correlation Matrices

 Random Number Generators

 Nonparametric Statistics

 FFTs

 ODE

 Integration

 Roots of Equations

 Option Pricing

 Wavelets

 Special functions

5

NAG Toolbox for MATLAB

 Algorithm are chosen for accuracy as well as
performance.

 New content driven by users.

 Algorithms come from:

 Collaboration with academic community

 Participation in funded research projects

 In-house development and implementation

6

NAG Toolbox for MATLAB

 Built as MATLAB mex files.

 This is actually auto-generated from XML
documentation.

 Available for Windows, Linux and Mac.

 Installed under the usual MATLAB toolbox directory.

 Makes use of a DLL or shared version of the NAG
Library.

 Windows and Linux versions exploits multicore.

7

NAG Toolbox for MATLAB

 The toolbox offer complementary functionality to
MATLAB.

 Could be an alternative to several specialist
toolboxes.

 We are not trying to compete with MATLAB!

8

NAG Toolbox for MATLAB

 The Toolbox is divided into chapters, each devoted to
a branch of maths or statistics. Each has a 3-
character name and a title, e.g., F03 – Determinants.

 Exceptionally, Chapters H and S have one-character
names.

 All routines in the Toolbox have five-character
names, beginning with the characters of the chapter
name, e.g.,d01aj.

 There are also “long names” that aim to be more
descriptive.

9

NAG Toolbox for MATLAB

 Documentation has an informative introduction to
each chapter:

 Technical background to the area.

 Assistance in choosing the appropriate routine

 And a document for each routine with:

 Description of method and references

 Specification of arguments

 Explanation of error exit

 Remarks on accuracy

 An example to illustrate use of routine, some enhanced
with graphics

10

NAG Toolbox for MATLAB

 All documentation is available through the MATLAB
help system.

 There are also some demos included.

 If equations are difficult to read, use the alternative
PDF versions of the documents by clicking on the
links at the top of each page, or accessing them via
the NAG website.

 Description of examples can be find the
documentation of the corresponding Fortran routine.

11

NAG Toolbox for MATLAB

 Let’s take a look ...

< show help >
< lookfor >
< help contents >
< chapter intros >
< example prog here >

12

A Simple Example

 Here is an example of how to use the NAG Library to
compute the solution of a real system of linear
equations, Ax = b, where A is an n by n matrix and x
and b are n vectors.

a = [1.80, 2.88, 2.05, -0.89;

5.25, -2.95, -0.95, -3.80;

1.58, -2.69, -2.90, -1.04;

-1.11, -0.66, -0.59, 0.80];

b = [9.52;

24.35;

0.77;

-6.22];

13

A Simple Example

 And we call like this:

 Here the NAG routine f07aa takes two arguments,
the matrix of coefficients, A, and the vector
representing the right-hand side, b.

[lu, ipiv, x, info] = f07aa(a, b);

x

x =

1.0000

-1.0000

3.0000

-5.0000

14

Arguments

 In our Fortran library this call would look like:
F07AAF(N, NRHS, A, LDA, IPIV, B, LDB, INFO)

 And input arguments are over-written.

 Some arguments in the toolbox have been omitted
as they can always be determined at runtime:
 Dimensions of arrays.

 Workspace whose size depends on the problem data.

 Arguments whose value depends entirely on that of other
input data.

 Others are optional ...

15

Optional Arguments

 Optional arguments are provided after all
compulsory arguments.

 Optional arguments appear in pairs: a string
representing the name followed by the value.

 The pairs can be provided in any order.

 There are optional arguments where:
 A sensible default value exists which applies to many

problems.

 The argument only applies to some cases.

 The value of the argument can normally be determined
from that of other arguments at runtime.

16

Optional arguments

 More arguments made optional in Mark 23.

 For example, in the system of equations given in the
previous section, it is obvious that the size of the
matrix A, n, is 4.

 However we can tell MATLAB that n is 3, in which
case it will solve the system represented by the top-
left 3x3 section of A, and the first three elements of
b.

 And we call like this …

17

Optional arguments

 The last element of x can (should) be ignored. Since b
was a 4x1 matrix on input, it will be a 4x1 matrix on
output, even though the last element is not being
used.

[lu, ipiv, x, info] = f07aa(a, b, 'n', nag_int(3));

x

x =

4.1631

-2.1249

3.9737

-6.2200

18

Arguments

 A similar outcome can be achieved by:

 Here x is of appropriate size.

[lu, ipiv, x, info] = f07aa(a(1:3,1:3), b(1:3));

x

x =

4.1631

-2.1249

3.9737

19

Another Example – Overriding Defaults

 g01hb computes probabilities associated with a
multivariate distribution to a relative accuracy which
defaults to 0.0001:

 We can vary tol:

g01hb(tail, a, b, xmu, sig)

ans =

0.9142

g01hb(tail, a, b, xmu, sig,'tol',0.1)

ans =

0.9182

21

Errors and Warnings

 The toolbox routines can produce a number of
errors. (Next slide.)

 In most cases the error message will give more
precise details of how the error was triggered. For
example a NAG:arrayBoundError might display the
message:

??? The dimension of argument 2 (A)

should be at least 4

22

Errors and Warnings
 NAG:licenceError - A valid licence couldn’t be found.

 NAG:arrayBoundError - Array provided is too small.

 NAG:callBackError - An error occurred when executing an
M-File passed as a parameter to the routine.

 NAG:missingInputParameters

 NAG:optionalParameterError - Not in name/value pairs, or
the name provided is not an optional parameter.

 NAG:tooManyOutputParameters

 NAG:typeError - A parameter is of the wrong type.

 NAG:unsetCellArrayError - A cell array has been passed
without all elements being set.

 NAG:valueError - An incorrect value has been provided for
a parameter.

23

Errors and Warnings

 The NAG routines can produce two warnings:

 NAG:truncationWarning - A string was truncated when
copying cell array of strings to a Fortran data structure.

 NAG:warning - The NAG routine returned an error or
warning.

 The latter is important, and means that on exit the
value of the argument ifail (or, in chapters f07 and
f08, info) was non-zero on exit.

 For details about how to interpret this value the user
should consult the Error Indicators and Warnings
section of the document for the particular routine.

25

Errors and Warnings

 However when an error is thrown none of the output
parameters are available for inspection.

 By default, we only use the warning in cases where
the output values may be of use

 in determining the cause of the problem

 as a "warm start" in subsequent calls to the routine, or

 where the routine has found a solution but there are
caveats, for example as to its accuracy.

 In all other cases we now issue the error.

27

Errors and Warnings

 If you do not wish to see a warning then you can
disable it in the usual way, for example:

warning('off', 'NAG:warning')

 In this case it is vital that you check the value of ifail
or info on exit from the routine.

< run g02aa with errors and warnings here>

28

Types

 The interfaces to NAG routines in the Toolbox are
quite precise about the types of their arguments.

 Since MATLAB assumes by default that every number
is a double users need to covert their input data to
the appropriate type if it is an integer, a complex
number or a logical.

 Similarly, in M-Files called by the NAG routine, the
user must ensure that the results returned are of the
appropriate type. This is to ensure the correct
alignment between the MATLAB and Fortran types.

29

Types

 Specification of NAG types are described in the
Documentation

 Introduction/Calling NAG Routines From Matlab

30

MATLAB Data Types - Integers

 There are 8 integer data types in MATLAB:

int8, int16, int32, int64,

uint8, uint16, uint32, uint64

 The number refers to the number of bits that are
used to store the value. uint* are unsigned integers.

 For example the int32 function: myint = int32(n)

 You can find the range of values supported by these
data types with intmin and intmax:
>>[intmin(‘int8’) intmax(‘int8’)]

ans =

-128 127

31

Integers

 For portability across versions of the toolbox that use
both 32 and 64 bit integers we provide two functions:

 nag_int(x) - converts x to the integer type compatible with
the current version of the NAG toolbox

 nag_int_name - returns the name of the integer class
compatible with your version of the NAG toolbox

>> a = nag_int(3)

a = 3

>> nag_int_name()

ans = int64

>> b = zeros(10, nag_int_name());

>> whos

Name Size Bytes Class Attributes

a 1x1 8 int64

ans 1x5 10 char

b 10x10 800 int64

32

MATLAB Data Types - Logical

 Logical data types:
>>a = true; b = false; a | b

ans =

1

 In many areas of MATLAB we can use integers
interchangeably with logical variables. In an if test
for example.

 However to create a logical from other datatypes,
use the logical function. mylog = logical(0)
This returns true for all but variables with value zero.

33

MATLAB Data Types - Complex

 The complex function constructs a complex result
from real and imaginary parts.

 The statement
c = complex(x,y)

returns the complex result x + yi, where x and y are
identically sized real arrays or scalars of the same
data type.

 y is optional, and without this argument a complex
variable is retuned with zero imaginary part.

 You can test a variable with the isreal function, which
returns false if the variable is complex.

34

Integers

 Integers used by the Toolbox are chosen to be
compatible with those used internally by MATLAB,
and will be int32 or int64.

 MATLAB does not support some operations on int64,
in particular the colon operator is not defined and so
they cannot be used as the start or end of a loop.

 It is often therefore necessary to use double
variables and just cast to int32/64 while calling the
NAG function.

35

Creating variables of correct type

 nag_int(1) - to create an integer of value 1

 complex(1,1) - to create 1.0000 + 1.0000i

 logical(0) - to create a logical that is .FALSE.

 If an object of the incorrect type is provided then a
NAG:typeError will be thrown:

s01ea(0)

??? argument number 1 is not a complex

scalar of class double.

 MATLAB sparse arrays not supported, B = full(A)”.

41

FUNCTIONALITY AND PERFORMANCE

42

Comparisons

 In this section we will look at some of the
functionality of the NAG Library.

 We will offer some comparisons of the Toolbox
compared with (mainly) core MATLAB.

43

Numerical Linear Algebra

 The dense linear algebra in MATLAB built on LAPACK.

 However, you can only get part of LAPACK.

 The NAG Library implements the whole of LAPACK.

 For example, you want to compute a subset of
eigenvalues?

 We expect the performance to be the same, don’t
we?

 Let us look at solving equations ...

45

Eigenvalues and Vectors – Chapter F08

 We compare:

 The MATLAB function eig

[v,d] = eig(a);

 f08fa (DSYEV in LAPACK). QR algorithm like eig

[a, w, info] = f08fa('V', 'U', a)

 f08fc (DSYEVD), divide and conquer algorithm

[a, w, info] = f08fc('V', 'U', a)

 Here are the results on my Intel Core Duo 2GHz
laptop ...

46

Eigenvalues and Eigenvectors

 Timings

(eig 130 secs

for n=3000

on one core)

47

Eigenvalues and Eigenvectors

 Speedup

49

Subset of Eigenvalues and Eigenvectors

 Speedup

64

Multicore Parallelism

 Firmly in the multicore age, soon to be many core.
We have to be thinking parallel.

 Algorithmic development at NAG always done with
parallelism in mind.

 Internal research project looking at many core.

 Involved in OpenMP development.

 Around 1/3 of the library parallel...

65

Multicore Parallelism

• Root Finding

• Summation of Series (e.g. FFT)

• Quadrature

• Ordinary Differential Equations

• Partial Differential Equations

• Numerical Differentiation

• Integral Equations

• Mesh Generation

• Interpolation

• Curve and Surface Fitting

• Optimisation

• Approximations of Special
Functions

• Dense Linear Algebra

• Sparse Linear Algebra

• Correlation and Regression
Analysis

• Multivariate Analysis of Variance

• Random Number Generators

• Univariate Estimation

• Nonparametric Statistics

• Smoothing in Statistics

• Contingency Table Analysis

• Survival Analysis

• Time Series Analysis

• Operations Research

66

CONCLUSIONS

67

Conclusions

 MATLAB is clearly a very powerful piece of software.
 Excellent for data generation, post processing,

algorithm profiling and ease of use.
 MATLAB has a huge range of mathematical functions.
 However, much of the functionality is provided by

toolboxes that need to be purchased separately.
 MATLAB also doesn’t provide a large choice of

algorithms, or limited use of its underlying libraries,
potentially affecting performance, some algorithms
are simply slower.

68

Conclusions

 NAG extensive experience at implementing
numerical code.

 We write software that is:
 useful
 robust
 accurate
 stable
 fast

 Our software covers many area of mathematics and
statistics, and all this functionality is available from
within MATLAB.

69

Conclusions

 Performance is sometimes achieved by providing a
choice of algorithms for a particular problem.

 Documentation is provided to guide you in selecting
the correct algorithm.

 Example programs help you become familiar with a
routine quickly.

 Information about error bounds of computed
solutions are provided to help interpret your results.

71

NAG Library for Python

72

Agenda for NAG Library for Python

 Installation tips.

 First steps with NAG Library for Python.

 Examples

 Documenation

73

NAG Library for Python

 Built as interface to the NAG Library for C

 Available on the following platforms

 64-bit Windows (CLW6I25DAL)

 32-bit Windows (CLW3225DAL)

 64-bit Linux (CLL6I25DCL)

 64-bit Mac (CLMI623DGL)

 Dependencies

 NAG Library for C

 Numpy

 Matplotlib (to run some graphical examples)

74

Installation I

 Install NAG Library for C for your platform

 Install python

 Install numpy (requires C compiler if not
precompiled. Complicated on Windows)

 Download and install python bindings

 Follow instruction in Readme

75

Installation II (easy way!!!)

 Install the NAG Library for C for your platform

 Install Anacoda (contains numpy and pydoc and
other useful software (spyder))

 https://www.continuum.io/downloads

 Open command line and install the python bindings
by typing

 conda install -c nag nag4py

https://www.continuum.io/downloads

76

Check the installation and licence

 Quick test of nag4py to show implementation details
and check the NAG licence

>>> from nag4py.a00 import a00aac, a00acc

>>> a00aac()

>>> a00acc()

77

Access documentation

 Python help mechanism to information on
library/chapters/functions

>>> import nag4py

>>> help(nag4py)

>>> import nag4py.c05

>>> help(nag4py.c05)

>>> from nag4py.c05 import c05auc

>>> help(c05auc)

 To get more help please consult the documentation
of the corresponding chapter/function in the NAG
Library for C

78

Examples

 Let’s take a look …

79

Types

 NAG Enums and NAG Error Structure – available in
the nag4py.util module

from nag4py.utill import noisy_fail, NAG_TRUE

 NAG Structures – available in associated module for
the chapter of interest

from nag4py.e04 import Nag_E04_Opt

myoptions = Nag_E04_Opt()

myoptions.list = Nag_False

 Input Integers/Doubles – input directly into Python
from nag4py.s import nag_cumul_normal

nag_cumul_normal(1.1)

80

Types

 Input/Output Arguments – these must first be set to
numpy arrays with the correct data type. TypeError
will be raised by the nag4py wrapper whenever an
argument is incorrectly typed.

from numpy import array, empty

from nag4py.util import nag_int_type

i_arr = array([1]*10, dtype=nag_int_type)

d_arr = empty(n)

 Callback Functions – available in the associated
chapter

from nag4py.e04 import NAG_E04UCC_FUN

c_callback = NAG_E04UCC_FUN(py_callback)

