
11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 1

February 11, 2025, 10:00–13:00

Documents: www.hrz.tu-darmstadt.de/hlr → Training & Support → Events → Introduction

Introduction to the Lichtenberg

High Performance Computer

B
ild

:
M

E
G

W
A

R
E

http://www.hhlr.tu-darmstadt.de

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 2

Infrastructure / How to get Access / Basic Usage

Introduction to the Lichtenberg

High Performance Computer

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 3

Georg-Christoph LICHTENBERG
1st July 1742 – 24th February 1799

• born in Ober-Ramstadt near Darmstadt

• 1763 studies at the University of Göttingen

• 1769 extraordinary professor of experimental physics,

1775 ordinary professor of experimental physics

• first to introduce life experiments in lectures

• 1793 member of the Royal Society in London

(≙ british Academy of Sciences)

Famous quotes:

• “It thinks, one should say, the way one says it flashes.”

• "I thank the Lord a thousand times for having made me become an

atheist."

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 4

Starting point

1. Researchers who plan to use HPC resources when devising

their overarching research project

2. Researchers who discover during their research project that their

local computing infrastructure is not sufficiently powerful to

pursue all their goals

3. Lecturers who want to provide a HPC training/course/workshop

Do not worry about € $ ¥ ₤ – using the cluster is free of charge!

No hidden costs, no strings attached, neither for you nor your organization.

Can I use the Lichtenberg HPC for my research?

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 5

How to proceed

1. Are my computational requirements compatible with the

Lichtenberg HPC resources?

▪ Do I have a parallelized linux program to solve my scientific

problem?

▪ Do I have a serial linux program, but sufficient distinct tasks to

solve my scientific problem?

2. Submit a project proposal for the Lichtenberg HPC

3. Get a user account for Lichtenberg HPC

(Nutzungsantrag – only available in German)

4. Do the computations

(more details in the 2nd part of the introductionary course.)

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 6

Lichtenberg –

A Parallel, Yet Hierarchical System

Processor = CPU (known from your desktop PC)

• Multiple cores per CPU (in our nodes typically: 48)

• Shared memory (all cores access the very same

memory chips)

Compute node (similar to a better workstation or server)

• Server with multiple processors (typical node: 2)

• Very fast connection between processors and

memory

• Shared memory between processors

Cache

Cluster

• All compute nodes as a battalion, commanded by a

sophisticated scheduler

• Very fast interconnect between the nodes for high-

throughput and low latency communication

• No shared memory between nodes

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 7

Parallelisation (1)
Serial vs. Parallel, Process vs. Thread

A serial program can be run concurrently, but only

in distinct instances (“workers”). Even if running on

the same computer, the distinct workers cannot

access the memory segments (data) of their

“siblings”.

A multithreaded program can use more CPU cores

on a given compute node in parallel. All its threads

can access the very same memory segment, i.e.

can work in parallel on the same data.

Cache

inside a Compute Node

Parallelism

Multi-
Processing
„Workers“

Process 1
Thread 1

Process 2
Thread 1

Process 3
Thread 1

Multi-Threading

Process 4
Thread 1
Thread 2
Thread 3

Process

Main MemoryMemSeg

1

MemSeg

2

MemSeg

3
MemSeg 4

X

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 8

Cache

Parallelisation (2):
Shared and distributed memory

Shared Memory (e.g. MT or OpenMP)

Distributed Memory (e.g. MPI)

Interconnect / Network …

MT = Multi-Threading (only „inside“ a node)

OpenMP = Open Multi Processing (only „inside“ a node)

MPI = Message Passing Interface („inside“ and „across“ nodes, too)

Compute Node

Cache

…
Cache

Cache

MPI

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 9

Parallelisation (3):
Scalability

Scientific Problem

Algorithm

Algorithm

Program X
Id

ea Program Y

Program Z
Im

p
le

m
e

n
ta

ti
o

n

AMDAHL’s Law: Only the parallel

portion of a program

benefits from more

CPU cores.

Your mileage may vary.

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 10

1

10

100

1 2 4 8 16 32 64 128

s
te

p
s
 p

e
r

ti
m

e

of cores per run

Scalability

This example suggests to run the
analyses with 16 or 24 cores per single
run.

• choose an exemplary representation of your simulation or calculation sized so

that 4 CPU cores can complete it within a reasonable time frame

• run this set with 4, 8, 16, 24, 32, 64, 96, … cores and measure your speed-up

(eg. in “number of atoms analyzed” or “simulation steps completed per single

run” or any other meaningful measure)

Parallelisation (4):
Scalability – what to gain with more CPU cores?

Strong scaling: speed-up when using more CPU

cores by keeping the same problem size

(CPU-bound algorithms).

Weak scaling: speed-up when scaling up both

number of CPU cores and problem size

(Memory-bound algorithms).

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 11

Lichtenberg HPC –

a tightly coupled cluster of compute nodes

• lots of compute nodes

(independent servers)

running Linux

• very fast (and expensive)

interconnect (Infiniband)

with high bandwidth and

low latency

• unified management

• computing non-

interactively on distinct

tasks (batch jobs)

• “job scheduler” distributes

your tasks to suitable

nodes, according to your

job specifications

1 hour runtime of the cluster at full load:

→ ~ 620 kWh

→ ~ 78 liters of gazoline

→ ~ 1,000 km journey by car

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 12

Energy Efficiency

Hot Water Cooling

legacy cooling by air • Waste heat of processors and memory

carried off by cool air

• Heated air is chilled down by air

conditions wasting extra energy and heat

going into the

environment
Temperatures

inlet outlet

17 °C 24 °C

F
o

rm
e
rl

y

hot water cooling

L
ic

h
te

n
b

e
rg

~55 °C

45 °C

• Processors and memory modules cooled

directly by cooling fluid

• Higher temperatures allow for reuse of

waste heat

Temperatures

inlet outlet

45 °C 52 - 55 °C

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 13

Compute Nodes
Details on https://www.hrz.tu-darmstadt.de/hlr → Operations → Hardware

630 nodes à

• 96 cores (2x Intel Cascade-Lake AP @2.3 GHz)
▪ Intel® Virtualization Technology (VT-x)

▪ Intel® TSX-NI

▪ 2x Intel® AVX-512

▪ VNNI (for DL/ML Inference)

▪ ≥ 4 NUMA domains

• 384 GBytes RAM (2.933 GHz memory clock)

MPI section

576 nodes à

• 104 cores (2x Intel Sapphire-Rapids Xeon Platinum 8470Q @2.1 GHz)
▪ Intel® Virtualization Technology (VT-x)

▪ Intel® TSX-NI

▪ Intel® Advanced Matrix eXtensions (AMX)

▪ Intel® Data Streaming Accelerator (DSA)

▪ Deep Learning Boost

▪ ≥ 4 NUMA domains

• 512 GBytes RAM (4.800 GHz memory clock)

LB2A1

LB2A2

https://www.hrz.tu-darmstadt.de/hlr/betrieb_hlr/hardware_hlr_1/hardware_und_konfiguration_hlr/index.en.jsp

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 14

Big-Mem Nodes LB2A1
Details on https://www.hrz.tu-darmstadt.de/hlr → Operations → Hardware

2 nodes à

• 96 cores (2x Intel Cascade-Lake AP @2.3 GHz)
▪ Intel® Virtualization Technology (VT-x)

▪ Intel® TSX-NI

▪ 2x Intel® AVX-512

▪ VNNI (for DL/ML Inference)

▪ ≥ 4 NUMA domains

• 1536 GBytes RAM (2.933 GHz memory clock)

MEM section

LB2A1

https://www.hrz.tu-darmstadt.de/hlr/betrieb_hlr/hardware_hlr_1/hardware_und_konfiguration_hlr/index.en.jsp

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 15

Big-Mem Nodes LB2A2
Details on https://www.hrz.tu-darmstadt.de/hlr → Operations → Hardware

MEM section
2 nodes à

• 104 cores (2x Intel Sapphire-Rapids Xeon Platinum 8470Q @2.1 GHz)
▪ Intel® Virtualization Technology (VT-x)

▪ Intel® TSX-NI

▪ Intel® Advanced Matrix eXtensions (AMX)

▪ Intel® Data Streaming Accelerator (DSA)

▪ Deep Learning Boost

▪ ≥ 4 NUMA domains

• 2048 GBytes RAM (4.800 GHz memory clock)

LB2A2

1 node à

• 192 cores (4x Intel Sapphire-Rapids Xeon Platinum 8468H @2.1 GHz)
▪ Intel® Virtualization Technology (VT-x)

▪ Intel® TSX-NI

▪ Intel® Advanced Matrix eXtensions (AMX)

▪ Intel® Data Streaming Accelerator (DSA)

▪ Deep Learning Boost

▪ 8 NUMA domains

• 6144 GBytes RAM (4.800 GHz memory clock)

LB2A2

https://www.hrz.tu-darmstadt.de/hlr/betrieb_hlr/hardware_hlr_1/hardware_und_konfiguration_hlr/index.en.jsp

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 16

Accelerator Nodes LB2A1
Details on https://www.hrz.tu-darmstadt.de/hlr → Operations → Hardware

4 nodes à

• 96 CPU cores (2x Intel Cascade-Lake AP @2.3 GHz)

• 384 GBytes RAM (2.933 GHz memory clock)

• 4x GPU accelerator Nvidia Volta 100

• 5 120 CUDA cores

• 640 Tensor cores

4 nodes à

• 96 CPU cores (2x Intel Cascade-Lake AP @2.3 GHz)

• 384 GBytes RAM (2.933 GHz memory clock)

• 4x GPU accelerator Nvidia Ampere 100

• 8 192 CUDA cores

• 432 TensorFlow32 cores

ACC section

https://www.hrz.tu-darmstadt.de/hlr/betrieb_hlr/hardware_hlr_1/hardware_und_konfiguration_hlr/index.en.jsp

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 17

Accelerator Nodes LB2A1
Details on https://www.hrz.tu-darmstadt.de/hlr → Operations → Hardware

3 nodes (Nvidia DGX) à

• 128 CPU cores (2x AMD EPYC 7742 @3.4 GHz)

• 1024 GBytes RAM (3200 MT/s)

• 8x GPU accelerator Nvidia Ampere 100

• 8 192 CUDA cores

• 432 TensorFlow32 cores

Though primarily used for GPU codes, mind the difference to all other compute nodes:

Codes / programs relying on AVX512 will not run here, only

those compiled with / expecting AVX2!

ACC section

https://www.hrz.tu-darmstadt.de/hlr/betrieb_hlr/hardware_hlr_1/hardware_und_konfiguration_hlr/index.en.jsp

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 18

Accelerator Nodes LB2A2
Details on https://www.hrz.tu-darmstadt.de/hlr → Operations → Hardware

2 nodes à

• 128 CPU cores (2x AMD EPYC 9554 @3.1 GHz)

• 1536 GBytes RAM (4.800 GHz memory clock)

• 4x GPU accelerator Nvidia Hopper H100

• 18 432 FP32 CUDA Cores

• 576 Tensor cores

ACC section

GP-GPUs coming soon: Intel Ponte-Vecchio

AMD MI300X (ROCm)

https://www.hrz.tu-darmstadt.de/hlr/betrieb_hlr/hardware_hlr_1/hardware_und_konfiguration_hlr/index.en.jsp
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 19

Storage Technology

Massively parallel file system “Storage Scale” by IBM
(formerly known as General Parallel File System)

2 PByte primary (tier 1):

IBM/Lenovo Elastic Storage System (“all-flash” with

NVMe), directly connected to IB fabric (to all nodes)

1 PByte secondary (tier 2):

IBM/Lenovo Distributed Storage Solution

(legacy magnetic hard disks)

Completely

transparent to jobs

and programs

Policy-driven
migration of „cold“
data to slower tier

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 20

File Systems

More details on https://www.hrz.tu-darmstadt.de/hlr → Usage → File systems

* Use the command cquota to find out your current usage and quota.

** Can be increased on request.

Mountpoint /work/home/ /work/groups/

/work/projects/

/work/scratch/

Symlinks /home /home/groups/

-

/work/scratch/

Env. Variable $HOME - $HPC_SCRATCH

Size ∑ 3 PByte

Access time Fast (GPFS via IB)

Accessibility Global (cluster-wide)

Persistence permanent 8 weeks

Quota* 50 GB**

4 Mio. files**

5 TB**

4 Mio. files**

10 TB**

20 Mio. files**

Backup → tape, and snapshots none

Usage Pattern low-volume I/O
(static input data, results of finished jobs)

high-volume I/O
(running jobs' input/output,

intermediary files)

Do not use home, groups or

projects for running jobs!

https://www.hrz.tu-darmstadt.de/hlr/nutzung_hlr/dateisysteme_hlr/index.en.jsp

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 21

high-volume I/Olow-volume I/O

File System Best Practices

/home/ (=/work/home)

• Compiling and saving of

your own programs

• Saving of important data (results

of computations)

• Job scripts and logs

/work/scratch/

• Saving of large (intermediary)

data

• Parallel input/output (ie. from

many nodes concurrently) with

high performance

Remember the deletion policy

on files not read/written for

>8 weeks!

/work/{projects,groups}/

• Compiling and saving of

programs shared between

project or group members

• Sharing of project- or group-

relevant input and output files

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 22

Backup

▪ Lichtenberg file systems are not intended as permanent storage for

research data → ULB

▪ The backup to tape mechanism is not intended to recover your deleted

files, only for recovery in case of a disaster

▪ To recover your deleted files in the low-volume I/O file systems, use the

snapshot mechanism:

• Go to the invisible folder “.snapshots” in your home or projects or group

folder (also in each subdirectory)

• There you will find several older snapshots of your home or project folder

and directories below it

▪ Beware: there are absolutely no backups/snapshots for the
/work/scratch file system!

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 23

Recap

- lots of cores in lots of nodes available, but for starting out and assessing

scalability, it is recommended to stay within 4 to 8 nodes, and thus to limit

your scaling tests to a maximum of 768 cores in total

- ~6 PFLOP/s total computing power
(LB2A1: #100 on Nov 2020’s and #150 on Nov 2021’s Top500 list of the most powerful computer systems)

- maximum # of cores per single node: 96 (many) / 104 (many) / 192 (one)

- maximum main memory per single node: 6 TByte

- maximum # of GPUs per Intel (avx512) node: 4

- maximum # of GPUs per AMD (avx2) node: 8

- 1+3 PByte shared file system

Lichtenberg HPC suits the

computational needs of the project

https://www.top500.org/

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 24

… what if not?

? Use an Institute Cluster (if available)

? Have a look at one of the other 9 NHR sites in Germany
(ie. with more GP-GPUs)

? Use another HPC of the GAUSS-Allianz
(Tier 1 systems: Jülich, München, Stuttgart – approx. 10x power)

? Use a Commercial Cloud – Drawbacks:

▪ costs money

▪ usually no fast interconnect available

(only High Throughput Computing possible)

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 25

How to proceed

1. Are my computational requirements compatible with the

Lichtenberg HPC infrastructure?

Yes. Then how to get access?

2. Submit a project proposal for the Lichtenberg HPC

3. Get a user account for the Lichtenberg HPC

(Nutzungsantrag – only available in German)

4. Do the computations

(more details in the 2nd part of the introductionary course.)

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 26

Project vs. User Account

▪ No fees for users or their faculties

▪ No plain commercial usage, though collaboration projects in applied sciences are welcome, as long as

the leading institution is an academic one

Project

scientific reasoning and goal
of the calculations

can be shared among persons

calculations are accounted on
project level only

Term: max. 12 months

User account

access via ssh/scp to
login nodes

Strictly personalized:
one user ≡ one account
(sharing is prohibited)

Students: max. 12 months
Scientists: max. 36 months

At least you need to apply for your personal User Account. For doing computations, you need

to become member of an existing project or you apply for your own project.

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 27

Project proposal – classes

SMALL ("local" projects)

Maximum of 360,000 core hours, also used for

estimating resources and to test for larger proposals.

≙ about 1 Lichtenberg compute node for a year

NHR Normal

> 1 Mio to < 12 Mio core hours.

≙ about 10 Lichtenberg compute nodes for a year

NHR Large

> 12 Mio to < 50 Mio core hours.

≙ about 42 Lichtenberg compute nodes for a year.

TUDa-Portal

NHR-Portal

Nationales Hochleistungsrechnen

https://hlr-hpc1.hrz.tu-darmstadt.de/pp
https://www.nhr4ces.de/hpc-access/

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 28

Small Project – 1. Administrative details

Forms and templates are on the HRZ web page
https://hlr-hpc1.hrz.tu-darmstadt.de/pp

Most fields should be self explanatory

• for follow-up projects: enter previous project ID

• Director of the Institute – needs to sign the project

• Principal Investigator: 1st researcher working on the project

(group leader, doctorate supervisor etc)

• Person of Contact (formerly, Project Manager): usually the person

we contact and who is responsible for the handling of the project.

• No private addresses, always use your Institute’s postal address

• project members can always be added later by the PoC, while

the project is running

Reminder: use only professional/institutional eMail addresses!

https://hlr-hpc1.hrz.tu-darmstadt.de/pp

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 29

Small Project – 2. Project details

• The HPC project refers to the overarching research project.

• A project on the Lichtenberg HPC can last max. 12 months. If your

research takes longer, follow-up proposals have to be submitted.

2.1 Scientific Abstract: is made public on the HRZ/HKHLR web page

and in HPC reports, so please write something generally intelligible that

represents you and your research appropriately (< 300 characters).

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 30

Small Project – 3. Technical description

3.1 Core*hours (accelerator hours will count 24x) → project class

3.2 Special requirements (eg. avx512 or more space in /home)

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 31

Small Project – 3. Technical description

3.3 What does your typical single batch job look like in terms of:

• number of CPU cores

• memory – rough estimate in GBytes per CPU core (justification

required if more than 5 GB / core are needed)

• duration (“wall clock time”) – ideally ≤ 24h (max 168h = 7d)

this is just a prospect–the „truth“ is what your later job submission scripts set as requirements!

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 32

Small Project – 3. Technical description

• Software

• Programming languages

• Parallelization models

• Tools and libraries

(mostly for our analytics)

• Any other special requirements

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 33

Small Project – 4. Submission

4 Confirm your obligations to:

• write and submit a final report after the HPC project is finished (ie. each year)

• acknowledge the Lichtenberg cluster in your publications, notify the HRZ about

publications by including them in your final report (TU-Da faculty members: add the proper

category “Hochleistungsrechner” for TUBiblio publications)

• comply with the European Commission’s Dual-Use Regulations

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 34

Project Review Process

Revision(s)

2 Scientific Reviews

Project starts

S

N/L

Final decision =

Final resources

N with DFG/BMBF funding:

only one addt‘l review

N without DFG/BMBF:

two scientific reviews

N: preliminary

resources

Decision by RAB
(NHR4CES Resource Allocation Board)
(meets quarterly)

Project proposal
Technical
Review (HRZ)

N/L

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 35

Final steps

• HRZ may give feedback on your proposal and can re-open the

web form for the requestor to upload a revised proposal.

• Once all modifications are done and submitted, HRZ sends

back a checksum’ed PDF of the proposal.

• this PDF then needs to be printed and signed (usually by PI

or DI), and sent back via office post to the HRZ.

Due to the COVID-19 pandemic, we accept scans via

eMail/ticket to open the project preliminary, but for legal

reasons, we need the paper original nonetheless).

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 36

Approval, and your active projects

• After Technical Review and signatures of a Small project are

completed, you get a mail "HLR Project ID ... Decision about

computing time request" with a recap of the project's details

• The next day, you can submit jobs to your new project, even

though its official starting date might be next month

Your currently active projects and their runtime are updated

nightly into the $HOME/.project file. To see them, use

cat ~/.project

or

member

Notification
Project starts

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 37

Project memberships

Since Nov 2022, you can use a new self-service for requesting and controlling

memberships in (your) HPC projects:

The member command

% member

lists all your active projects

% member –p <project01234> –m

lists this project’s manager / coordinator – ie. whom to ask for becoming member

% member add –p <project01234> –u TU-ID (only allowed by PoC/PM)

makes TU-ID a new member of this project

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 38

How to proceed

1. Are my computational requirements compatible with the

Lichtenberg HPC infrastructure?

2. Submit a project proposal for the Lichtenberg HPC

3. Get a user account for the Lichtenberg HPC

(Nutzungsantrag – only available in German)

4. Do the computations

(more details in the 2nd part of the introductionary course.)

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 39

How to get access – user regulation

• do not share your account! One account ≡ one person!

• no plain commercial projects (though academic-industry

cooperations eg. in applied sciences are okay)

• „dual use“ projects (military/weaponry research) not allowed

• embargo regulations for several countries

(HPC access is possible for their citizens, with additional paperwork)

• LB2: not only Hessia, but nation-wide use

due to funding from the federal ministry of education and research

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 40

How to get access –

User application / Nutzungsantrag

• available on the HRZ web page

• only in German

• print and fill out the last 2 pages 7+8

• have it signed by the director of the institute

• send the signed form to us (HRZ) via office post (due to the current

COVID-19 pandemic, we accept scans via eMail/ticket, but need the

signed original nonetheless)

If the new user is not from the TU Darmstadt:

• get a “guest TU-ID” first

• send the signed form to your local contact person (list of contact persons

is available on the HRZ web page)

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 41

Recap of the “paper work”

Small:

Max 360 000 core hours - about ½ Lichtenberg Compute Node / year

NHR Normal:

1 – 12 Mio core hours - about 1-15 Lichtenberg Compute Nodes / year

NHR Large:

12 – 50 Mio core hours - about 15-60 Lichtenberg Compute Nodes / year

use cat $HOME/.project or member to see your actives

1.) Project

• scientific reasoning of
computations

• scientific abstract to be
published

• final report required!

• acknowledgment of LB
computing time grant in all
publications required!

2.) User account

• independent of project!

• personalized (TU-ID)

• necessary for each
researcher doing
computations

• expiry time independent
of project’s runtime

• do not share your account with others!

• accounts do expire (you get a warning in due time):
students: max. 12 months
scientific staff: max. 36 months

use /shared/bin/account_expire to see yours

• any user is member of one or several projects, and
projects can have several users – that’s why there are
different terms and no unison between them.

distinct forms & processes & validity terms

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 42

Questions?

Coffee break and quiz after this slide…

Good to know: even after approval and start of a project:

• any number of additional researchers/students/co-workers can be
added to a running project (see the ‘member’ command)

• Assigned core hours can be adjusted during a project’s runtime if the

need arises (and is well reasoned for)

• your proposal’s “main memory per core” and “number of tasks” is not

a fixed ceiling. In your productive batch job scripts, you can freely
request more --mem-per-cpu or more --ntasks (though the latter is

of course accounted to your project)

• Even if not initially requested in your project application, you can use

GPU accelerators at will

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 43

Coffee break

Introduction to the Lichtenberg

High Performance Computer

Part 2: basics of resource allocation and job submission

We will continue in ~5-6 minutes!

Online Quiz (anonymous, non-tracking) for the break:

https://university.quizacademy.io/course/CIWBTC

try “part 1” only

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 44

How to proceed

1. Are my computational requirements compatible with the

Lichtenberg HPC infrastructure?

2. Submit a project proposal for the Lichtenberg HPC

3. Get a user account for the Lichtenberg HPC

(Nutzungsantrag – only available in German)

4. Do the computations

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 45

Remote access

You cannot (and would not want to) work directly in the HPC building

with the Lichtenberg HPC.

→ Access the cluster remotely.

Campus /

Internet

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 46

Login Nodes LB2A1
Details on https://www.hrz.tu-darmstadt.de/hlr → Operations → Hardware

8 login nodes

• Processors:

➢ 2 Intel Xeon Platinum 9242 processors

Cascade Lake, AVX512

≙ 2 · 48 = 96 CPU cores

➢ 2.3 GHz

(up to 3.8 GHz in turbo mode)

• Main Memory:

➢ 768 GB RAM

• Network:

➢ 2 · 10 Gigabit Ethernet

➢ HDR-100 InfiniBand

• Accelerators:

➢ 1x Nvidia Tesla T4 GPU

(every “odd”-numbered login node)

https://www.hrz.tu-darmstadt.de/hlr/betrieb_hlr/hardware_hlr_1/hardware_und_konfiguration_hlr/index.en.jsp

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 47

Login Nodes LB2A2
Details on https://www.hrz.tu-darmstadt.de/hlr → Operations → Hardware

8 login nodes

• Processors:

➢ 2 Intel Xeon Platinum 8470 processors

Sapphire Rapids, AVX512

≙ 2 · 56 = 104 CPU cores

➢ 2.1 GHz

(up to 3.8 GHz in turbo mode)

• Main Memory:

➢ 1024 GB RAM

• Network:

➢ 2 · 100 Gigabit Ethernet

➢ HDR-100 InfiniBand

https://www.hrz.tu-darmstadt.de/hlr/betrieb_hlr/hardware_hlr_1/hardware_und_konfiguration_hlr/index.en.jsp

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 48

Purpose of the Login Nodes

▪ Transferring files to and from the Lichtenberg HPC

(there are no special "copy" or "I/O" nodes)

▪ Editing files on the cluster

▪ Compiling software

▪ Testing software (time limit: 30 minutes and nice or <96 cores)

▪ Debugging small test cases

▪ Submitting computations to the batch system (explained later)

▪ Checking status of compute jobs

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 49

Connecting to the Lichtenberg HPC

Open an SSH connection to one of the login nodes:

lcluster1

…

lcluster7

lcluster13

…

lcluster19
“Cascade Lake”, AVX512, 96 Cores, 768 GB RAM​

.hrz.tu-darmstadt.de

lcluster13/15/17/19: NVidia Tesla T4 GPU

• All login nodes are equal (except for the four with GPUs)

• There is no load balancer – just choose whichever of the above

• Switch to another login node if your current one is too much

loaded

• initial login password is your main TU-ID password

L
B

2
A

2
L

B
2

A
1

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 50

Connecting to the Lichtenberg HPC

SSH – the Secure Shell (encrypted + secured network channel)

• is the only remote connection protocol available for Lichtenberg
(no rsh nor telnet)

• provides for terminal (text-based) access and for secure file transfer (scp)

into and from the cluster

From a Windows PC: use the SSH client built into Windows 10 or PuTTY or

Bitvise (cf. next slide) or similar software.

From Linux/Mac: ssh -X -C <tu-id@>lcluster13.hrz.tu-darmstadt.de

X11 Forwarding

Compression (speed-up)

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 51

Connecting to the Lichtenberg HPC

In case of login problems:

• Read the (ssh) error message in its entirety. Sometimes it even

explains how to fix the actual problem.

• raise verbosity: ssh –v[vv] will show more (debug) messages

• Try another login node (the one you tried may be down)

• Try to log in explicitly with IPv4 or IPv6:

ssh -XC –4 <tu-id@>lcluster15.hrz.tu-darmstadt.de

ssh -XC –6 <tu-id@>lcluster17.hrz.tu-darmstadt.de

• Change your TU-ID password (https://www.idm.tu-darmstadt.de) and wait a few

minutes before retrying

• "Corrupt MAC" (Windows): use "ssh -m hmac-sha2-512 …"

• If nothing of the above works out: FAQ or open a ticket.

https://www.idm.tu-darmstadt.de/
https://www.hrz.tu-darmstadt.de/hlr/support_hlr/faq_hlr/index.en.jsp

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 52

Some Software for Windows Users

▪ SSH (plain command prompt):

• ssh built in (since Win10 Update “Apr2018”): cmd→ ssh TU-ID@lcluster…

• PuTTY (or one of its forks like KiTTY)

(http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html)

▪ File transfer between your computer and the cluster:

▪ WinSCP (http://winscp.net), FileZilla (http://filezilla-project.org)

▪ Both (SSH and file transfer)

▪ Bitvise (https://www.bitvise.com/ssh-client)

➢ Hint: To obtain some speedup, enable compression and always use the

most recent version.

The HRZ cannot support the (above mentioned) software, nor can it give any guarantee against

security holes. Thus, it is your responsibility to keep your software up to date!

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://winscp.net/
http://filezilla-project.org/
https://www.bitvise.com/ssh-client

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 53

Some Software for Windows Users

▪ For graphical applications:

• Win10 ssh client or PuTTY or Bitvise (enable “X11 forwarding”!) with

VcXsrv (http://sourceforge.net/projects/vcxsrv).

➢ For fast connections, e.g. network of TU Darmstadt

• VNC (a little difficult to configure here, still possible)

➢ Also works well on slower connections.

• MobaXterm (https://mobaxterm.mobatek.net/)

➢ Multi-terminal ssh/scp client with built-in Xserver ("swiss army knife")

• Do not use Xming! The free version has not been updated since 2007 and

has several bugs. VcXsrv is by far superior.

The HRZ cannot support the (above mentioned) software, nor can it give any guarantee

against security holes. Thus, it is your responsibility to keep your software up to date!

http://sourceforge.net/projects/vcxsrv
https://mobaxterm.mobatek.net/

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 54

Work environment

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 55

Operating System

▪ Linux only

▪ Red Hat Enterprise Linux [RHEL] 8

▪ x86_64 architecture (64bit)

▪ Shell (command interpreter): /bin/bash (BOURNE-again shell)

▪ Some general-purpose programs are included in the operating

system’s base installation, ready to use:

➢ You can just run these programs, e.g. text editors like vi, nano, mc, gedit

(for editing files directly on the login nodes)

➢ Only a limited number of packages is provided this way, because the OS

resides completely in the main memory (RAM) of each node (diskless)

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 57

The Module System*

▪ unified Lua script kit to set up and tear down the environment ($PATH, $LD_LIBRARY_PATH,

$MANPATH …) for different scientific programs, libraries and packages

▪ resides on the cluster-wide shared file system → available to all login & compute nodes

▪ A lot of software is provided by the module system:

• Compilers (GCC 8.5 – 13.1, Intel (oneAPI) 2020-2024, LLVM 8-18 …)

• Libraries (MPI, MKL, ACML, CUDA, NAG, Boost, FFTW, GSL, …)

• Tools (TotalView, SVN, Git, GDB, Valgrind, Java, Python 2.7 – 3.10, CMake, …)

• Application software (MATLAB, ANSYS, Abaqus, Gurobi, LAMMPS, PETSc, QuantumEspresso,

R, …)

Make sure you hold (or are entitled to use) the necessary licenses for commercial packages!

▪ Use module avail to obtain a list of all modules currently loadable

and module whatis for their description.

▪ Use module help <modulename> to get some further details about a specific module

* not to be confused with perl or python modules!

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 58

The Module System*

▪ the module tree is hierarchical in terms of

∟ the loaded compiler

∟ the loaded MPI implementation

That is: compiler- or MPI-dependent modules will not be shown nor listed

until you have loaded a compiler or an MPI, respectively!

+ avoids unfavorable as well as mutually exclusive module combinations

(ie. two different compilers at the same time)

+ makes sure you get modules compiled with exactly your loaded

compiler/MPI variety and version

▪ use module --show_hidden avail to really see all modules

available

* not to be confused with perl or python modules!

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 59

The Module System*

▪ To load a module, use the command module load <modulename>.

• Read the hints that might appear. Sometimes you have to load additional

modules.

• Technically, the module call refers to (and requires) a certain version

number, e.g. ansys/21

• For some modules where it makes sense, we set a default version,

e.g. you can use module load gcc (instead of gcc/8.5).

▪ To show all currently loaded modules, use module list.

▪ Shortcut: ml (= “module list”) / ml myapp (= “module load myapp”)

▪ To remove a module, use module unload <modulename>.

▪ To remove all modules, use module purge, eg. to get a clean

environment

* not to be confused with perl or python modules!

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 60

Other Software

How to use application software (not provided by the OS) on the cluster:

1. Program is provided by our module system.

➢ You have to load the corresponding module(s)

➢ We can create new modules if the software is useful for several people

2. Install the software to your $HOME folder (/home/<TU-ID>).

➢ If software is not available via the module system.

➢ Installation procedure dependent on the program you want to install (refer to

manuals, website, README/INSTALL files, etc).

3. Install the software to a common group folder.

➢ group/project area (/work/projects/p00XXX) can be made available on request.

➢ (Same) installation procedure as for a home folder.

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 61

Python: virtualenv instead of conda

Python conda environments could interfer with and do not harmonize well

with python modules from our module system.

Thus we strongly recommend using python virtual environments, if you

need specific python packages not available in the module system.

ml gcc/8 python/3.10

mkdir test; cd test

python -m venv myenv

source myenv/bin/activate

pip install --upgrade pip

pip install spython

deactivate

Load a suitable compiler & python version

Create a vEnv named „myenv“…

and activate it.

Now you can use pip without „--user“…

to install eg. the „spython“ module.

These „create & install steps“ are only required once, outside of a batch job!

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 62

Python: virtualenv in a batch job

In each batch job, use only the lines

ml gcc/8 python/3.10

cd test

source myenv/bin/activate

python myScript

deactivate

switch to the same directory

Activate the vEnv…

and run your „payload“, ie. your script requiring „spython“

and deactivate it (optional)

to run your scripts using your special python modules from this vEnv.

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 63

Use docker containers with apptainer

There is no docker available on the Lichtenberg cluster. Podman offers

docker functionality, but has severe limitations, and is difficult to set up. We

recommend apptainer (formerly singularity).

From docker registry:

 singularity build lolcow.sif docker://godlovedc/lolcow

 singularity run lolcow.sif

From docker-archive (podman pull only works if podman is correctly configured):

podman pull docker://godlovedc/lolcow

 singularity build lolcow_from_archive.sif docker-

archive://$(pwd)/lolcow_docker_archive.tar

singularity run lolcow_from_archive.sif

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 64

Use docker containers with singularity

While you cannot build a singularity container directly from a dockerfile, you

can convert a dockerfile to a singularity definition, and build from

that (requires „fakeroot“):

cd test

git clone https://github.com/GodloveD/lolcow

source myenv/bin/activate

spython recipe lolcow/Dockerfile ./sing.lolcow

singularity build --fakeroot lolcow_from_dockerfile.sif sing.lolcow

singularity run lolcow_from_dockerfile.sif

deactivate

These „convert & install steps“ are only required once, outside of a batch job!

To run the container inside a batch job, use only

cd test

singularity run lolcow_from_dockerfile.sif

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 65

• Questions up to here?

• (Live demo)

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 66

Batch System

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 67

Batch (Queuing) System

▪ Do not confuse the login nodes with the cluster!

There are only a few login nodes, but >1,200 compute nodes.

Do not simply start your program on the login node hoping it will use the cluster!

→ Login nodes are (only) your main access point to the system.

▪ The cluster runs 24/7 (including the weekend) and many users might

want to do far more calculations than there are CPU cores available

→ Batch queueing system arbitrates between jobs by priorities, based

on allotted and consumed computing time.

▪ You cannot connect or login directly to the compute nodes.

→ from the login nodes, use the batch system to submit jobs

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 68

Computations via batch jobs only

Campus /

Internet

Login Nodes

job script

„submit“

job scheduler / batch scheduler

• distributes jobs to compute

nodes…

• …according to resource

requirements and priorities

• monitors your program

• catches STDOUT and STDERR

for you in files

• informs you about start & end of

jobs via eMail

Slurm *

c
o

m
p

u
te

 n
o

d
e

s

Other users

Other users

You

* formerly: Simple Linux Utility for Resource Management

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 69

Shell Script / Job Script

A shell script is simply a plain text file (with UNIX line ends), listing all commands to

execute one after another, line by line (comparable to a "batch script" in Windows).

#!/bin/bash

a comment line ignored by bash

another comment, also ignored

echo "Command list starting..."

myProg1 --in=input1.dat --out=output1.txt --param1=value1 ...

myProg2 --in=output1.txt --out=output2.txt --param2=value2 ...

echo "Command list finished."

/home/<TU-ID>/bin/myScript

"Shebang line" - tells

what interpreter to

use for execution

List of commands to

execute, ie. the

“payload” so to say

https://www.hrz.tu-darmstadt.de/hlr/nutzung_hlr/linuxmiscellaneous/linuxmisc.en.jsp#wronglfdetection

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 70

Job Script
… above all, is such a simple shell script (plain text file with UNIX line ends)

“payload”:

Commands to run

your program

Add job-specific

requirements aka

“Slurm pragmas”

here

#!/bin/bash

echo "This is not yet a job."

module purge

module load gcc/X.Y openmpi/X.Y

srun <myMPIprogram> …

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 71

Important Submission Parameters

You always have to set the following parameters:

• #SBATCH -n <numtasks>: Number of tasks, ie. separate [MPI] processes
(This often corresponds to the number of CPU cores, except MultiProcessing / OpenMP / Multi-Threading)

• #SBATCH --mem-per-cpu*=<Memory>: Maximum memory per core in MBytes

• #SBATCH -t <time>: run time limit for the job (as “wall clock time”)

(‘mm’, ‘mm:ss’, ‘hh:mm:ss’, ‘dd-hh’, ‘dd-hh:mm’, ‘dd-hh:mm:ss’, ie. “1-” = “24:00:00” → 1 day)

Recommended (but optional) parameters:

• #SBATCH -A <project_name>: project to account on. Important if you have access to

several projects. (project_name = “project” + 5 digits, e.g. “-A project00123”)

• #SBATCH -J <jobname>: Name of the job (your choice, does not have to be unique)

• #SBATCH -o <filename>: Write the job’s standard output (‘stdout’) to a file

• #SBATCH -e <filename>: Write the job’s standard error (‘stderr’) to a file (optional)

* means „memory per core“!

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 72

Further useful parameters

• #SBATCH -c <number>: # of CPU cores per task/process, in case of MultiProcessing

/ OpenMP / Multi-Threading

• #SBATCH -N <nodes>: # of nodes to use (if -n > cores per node)

• #SBATCH --mail-type=<NONE | BEGIN | END | ALL | …>

Send an email (or not) when jobs start and/or end

• #SBATCH -D <path>: “working directory” for all commands below

(is like “cd <path>” before running your program)

• #SBATCH --exclusive: Exclusive node (no other jobs) – caution!

• #SBATCH -C <feature>: Select special resources (discussed later)

• #SBATCH -a <index range>: Submit a job array (discussed later)

See man sbatch for even more additional parameters if required.

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 73

#!/bin/bash

#SBATCH -J my_job

#SBATCH --mail-type=END

#SBATCH -e /work/scratch/<tu-id>/somewhere/%x.err.%j

#SBATCH -o /work/scratch/<tu-id>/somewhere/%x.out.%j

#SBATCH --mem-per-cpu=250

#SBATCH -t 00:20:00

#SBATCH -n 4

echo "This is Job $SLURM_JOB_ID"

module purge

module load gcc/X.Y openmpi/X.Y

srun /path/to/myMPIprogram

Job Script
… is a simple shell script with SLURM pragmas (camouflaged as shell comments),

using slurm placeholders as %… and in the payload, shell variables as $...

%j will be

replaced by the

actual job id.

…while $ variables are

shell script placeholders

your program

%x will be

replaced by the

JobName.

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 74

Submitting a Job and

other SLURM Commands

▪ sbatch <JobScriptFile> : submit the job and returns the JobID.

▪ squeue: list all your jobs

▪ sjobs <JobID>: print detailed information about a job

▪ scancel <JobID>: Kill a particular job

▪ scancel –u <TU-ID>: Kill all your own jobs (use with care!)

▪ csreport: shows information about used computing time per project

▪ csum or seff <JobID> or tuda-seff <JobID>: computing time and

resource usage (efficiency)

see also the SLURM “cheat sheet”: https://slurm.schedmd.com/pdfs/summary.pdf

https://slurm.schedmd.com/pdfs/summary.pdf

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 75

Problems in Submitting Jobs

sbatch <JobScriptFile> : submit the job and returns the JobID.

In case of errors:

▪ Read the error message

▪ Check your project (#SBATCH -A … vs. cat ~/.project)

sacctmgr show assoc account=<your project>

▪ Check your job script for windows line ends:

file myJobScript (if it says "ASCII text, with CRLF", re-edit the job

script to have UNIX line endings, eg. with the dos2unix command)

▪ check for conflicting requirements (ie. >512 GByte RAM and a GPU)

▪ Avoid using "--ntasks-per-node“, use “-N <# of nodes>” instead

see also the SLURM “cheat sheet”: https://slurm.schedmd.com/pdfs/summary.pdf

https://slurm.schedmd.com/pdfs/summary.pdf

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 76

Special Features / Constraints

By default, jobs are executed on arbitrary nodes

When jobs have special requirements, such as

particular CPU architectures (avx512 or avx2)

more main memory than is available on the average compute node

→ select so-called “features”

GP GPUs (accelerators based on graphics cards)

→ select so-called “GRes” (Generic Resources)

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 77

Available Features / GRes

Details on those features not being part of this talk can be found here:

https://www.hrz.tu-darmstadt.de/hlr/nutzung_hlr/rechenjobs_und_batchsystem_hlr/index.en.jsp

CPU Acc Memory Misc

-C avx512

-C avx2

--gres=gpu

any Nvidia GPU

--gres=gpu:a100

a100 (NVidia AMPERE 100)

--gres=gpu:v100

v100 (NVidia VOLTA 100)

--gres=gpu:h100

h100 (NVidia HOPPER 100)

-C mem

-C mem1536g

-C mpi

-C i01

LB2A1

-C i02

LB2A2

https://www.hrz.tu-darmstadt.de/hlr/nutzung_hlr/rechenjobs_und_batchsystem_hlr/index.en.jsp

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 78

Selecting Features

▪ Use submission parameter -C to select features (aka “Constraints”)

▪ Examples:

• #SBATCH –C i01: use compute nodes of LB2A1 (96 CPU cores)

#SBATCH –C i02: use compute nodes of LB2A2 (104 CPU cores)

(if not specified, a “-c 96” job may end up on a node with 104 cores)

• #SBATCH -C avx2

Job is dispatched to nodes with AVX2 CPUs (e.g. DGX nodes w/AMD)

• #SBATCH -C "avx512&mem1536g"

Job is dispatched to nodes with AVX512 CPUs and 1.5 TByte of RAM

See man sbatch for more details.

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 79

Selecting GRes
Unlike constraints/features, generic resources allow for more precise

specifications of what accelerator(s) a job needs

▪ Use submission parameter --gres=Class:Type:# to select specific

resources (if not specified, the defaults are Type=any and #=1)

• #SBATCH --gres=gpu

Job is dispatched to nodes with any GPU card(s) and can use 1 of them

• #SBATCH --gres=gpu:4

Job is dispatched to a node with any GPU card(s) and can use 4 of them

• #SBATCH --gres=gpu:v100

Job is dispatched to a node with NVidia GPUs of type "Volta 100" and will have access

to 1 of these cards

• #SBATCH --gres=gpu:a100:3

Job is dispatched to nodes with NVidia GPUs of type "Ampere 100" and will have

access to 3 of these cards

Do not specify >4 with "-C avx512" as there are only Intel avx512 nodes with 4 GPUs.

To request up to 8 GPUs/node, add "-C avx2" (Nvidia DGX nodes with AMD CPUs).

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 80

Even with --gres=, GP-GPUs are only selectable as a whole card.

Your #SBATCH -n XX -c YY still refers to CPU cores only!

▪ --gres=gpu:a100:1

▪ --gres=gpu:a100:3

Requesting separate GPU (tensor) cores or less than 100% GPU-RAM is not possible.

Selecting GRes
Unlike constraints/features, generic resources allow for more precise

specifications of what accelerator(s) a job needs

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 81

• Questions up to here?

• (Live demo)

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 82

Tips & Tricks

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 83

Tips & Tricks:

Applications

In general: You are the expert for your application!

• read its documentation, making sure you understand its (possibly several)

parallelization model(s)

• run scalability tests to assess optimal -n / --ntasks= and

-c / --cpus-per-task= settings for your case, especially if your

program supports both MPI and MultiThreading

In case of problems:

• consult the vendor first, ie. (commercial) support, the vendor’s user forums

and user communities – most likely, others have had similar problems and

got them solved

• if it works in other environments but not on the Lichtenberg, open a ticket

with us

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 84

Tips & Tricks:

Modules

To have a consistent environment for each and every job, we recommend

• a module purge line at the very beginning of your job

(unloading all modules you might have loaded in your login session, which otherwise would

be inherited by all jobs you submit)

• specifying module versions explicitly:

ml gcc/X.Y openmpi/X.Y

≙ document your code while using it!

Later on, you know exactly with which software modules and versions your job ran.

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 85

-n / --ntasks=

The crux of vs.
-c / --cpus-per-task=

-n number of distinct processes to run (MPI)

Processes could always be dispatched to arbitrary and distinct nodes = requires MPI!

-c number of CPU cores to use per single process (Multi-Threading/OpenMP)

Threads will never be placed on distinct nodes (only on the same node)!

If you run a non-MPI program via -n 4, it is simply started 4 times. These 4 distinct instances

will most likely overwrite eachother‘s log and output files.

→ Use -n only to run MPI programs!

Multithreaded program on

one LB2 node (à 96 cores):

#SBATCH -n 1

#SBATCH –c 96

#SBATCH --exclusive

OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

export OMP_NUM_THREADS

myMTprogram

MPI program on four

LB2 nodes (à 96 cores):

#SBATCH -n 384

#SBATCH –N 4

srun myMPIprogram

Hybrid program on four LB2 nodes

(à 96 cores):

#SBATCH -n 4

#SBATCH –N 4

#SBATCH –c 96

OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

export OMP_NUM_THREADS

srun myMPI+MTprogram

Tips & Tricks:

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 86

Tips & Tricks:

Job run time requirements

… are always taken as wall clock time (not accumulated CPU time) = total real time needed to

complete all steps and components of your job.

▪ ≤ 30 min (“short” jobs)

• Jobs can run on almost all nodes

• Additionally, a few nodes are reserved just for such jobs

▪ ≤ 24 h (“default” jobs)

• Jobs can run on almost all nodes

▪ > 24 h (“long” jobs)

• Only a limited number of nodes processes these jobs

• Currently limited to one week

-t 1- and

-t 24:00:00 are

inclusive – no need to
specify 23:59:59

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 87

#!/bin/bash

#SBATCH …

SBATCH …

##SBATCH …

###SBATCH …

normal shell script comment

module purge

module load gcc/X.Y openmpi/X.Y

srun <myMPIprogram>

Tips & Tricks:

Job Script or “commenting comments”

“payload”:

Commands to run

your calculations

job-specific

requirements aka

“SBATCH pragmas”
active

SBATCH

pragma

inactive

SBATCH

pragmas

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 88

Tips & Tricks:

How do I “size” my Jobs?

• use the most generic form possible, but be as specific as necessary

Why specifying „mem1536“ unless your program really requires it? Your job would have to

wait for the scarce „big-mem“ nodes, even though lots of other nodes were idling around.

• to assess the two key requirements necessary for your program, run it with

the UNIX time command:

/bin/time --format='MaxMem: %Mkb, WCT: %E' myProgram

then: --mem-per-cpu = (MaxMem (MB) / # of cores used) + safety margin

and: --time = Wall Clock Time + safety margin

• use --ntasks= values in even multiples of 96 or 104 cores (or even

divisors like 24 or 26, and not setting --exclusive), to best exploit all

cores on your allocated nodes

• in case of several similar jobs, make use of job arrays

(discussed in a minute)

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 89

0

1

2

3

4

1 3 5 7 9 11 13 15 17 19 21 23

Older Compute Node
24 cores, ~58 GByte RAM available

Average RAM per CPU Core

Tips & Tricks:

How do I “size” my Jobs?

Non-MPI jobs (confined to run inside a node)

• should be run with
#SBATCH -n 1

#SBATCH -c 96

to use all cores on a node

• in case your program scales best at 24 cores, use
#SBATCH -n 1

#SBATCH -c 24

to place 4 of your jobs concurrently on the same node

MPI jobs (running across several nodes)

• asking for any number of cores not being an even

multiple of 96

• asking for more main memory-per-core than 3,800 GiB

will waste resources by not using all cores of all nodes

involved.

Remember: even these „wasted“ cores not doing anything

for your job will be accounted on your project!

0

1

2

3

4

1 3 5 7 9 11 13 15 17 19 21 23

Older Compute Node
24 cores, ~58 GByte RAM available

Average RAM per CPU Core

--ntasks=32
--ntasks=16

--mem-per-cpu=2g

cores not used
Older node type with 24
cores taken just as an

example – 96 cores would
„detonate“ this figure to be

unreadable.
Transform the principle to 96
cores and ~3800 MByte/core

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 91

Cache

Tips & Tricks:

Exclusive or Shared

• Default node config on the Lichtenberg: user-exclusive, meaning only

your jobs can share a given node (and none of other users)

• #SBATCH --exclusive assigns node(s) exclusively to this single job

Assuming your scientific program scales best at using 24 cores per run:

why not running 4 jobs concurrently on the same node?

#SBATCH --exclusive

Cache

m
y
 j
o
b
 1

###SBATCH --exclusive

m
y
 j
o
b
 2

m
y
 j
o
b
 3

m
y
 j
o
b
 4

m
y
 j
o
b
 1

 ☺

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 92

Tips & Tricks:

Dispatching Jobs
(assuming a node with just 16 cores)

Node 1 Node 2 Node 3

Core 1 Job 1 Job 2

Core 2 Job 1 Job 2

Core 3 Job1 Job 2

Core 4 Job 1 Job 2

Core 5 Job 1 Job 3

Core 6 Job 1 Job 3

Core 7 Job 1 Job 3

Core 8 Job 1 Job 3

Core 9

Core 10

Core 11

Core 12

Core 13

Core 14

Core 15

Core 16

New job (job 4) requesting 16 cores

Where will it run?

Unclear!

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 93

Tips & Tricks:

Exclusive vs. Non-exclusive Jobs
(assuming node with 16 cores)

Node 1 Node 2 Node 3

Core 1 Job 1 Job 2

Core 2 Job 1 Job 2

Core 3 Job1 Job 2

Core 4 Job 1 Job 2

Core 5 Job 1 Job 3

Core 6 Job 1 Job 3

Core 7 Job 1 Job 3

Core 8 Job 1 Job 3

Core 9 Job 4 Job 4

Core 10 Job 4 Job 4

Core 11 Job 4 Job 4

Core 12 Job 4 Job 4

Core 13 Job 4 Job 4

Core 14 Job 4 Job 4

Core 15 Job 4 Job 4

Core 16 Job 4 Job 4

This might or might not

be the desired behavior!

Node 1 Node 2 Node 3

Core 1 Job 1 Job 4 Job 2

Core 2 Job 1 Job 4 Job 2

Core 3 Job1 Job 4 Job 2

Core 4 Job 1 Job 4 Job 2

Core 5 Job 1 Job 4 Job 3

Core 6 Job 1 Job 4 Job 3

Core 7 Job 1 Job 4 Job 3

Core 8 Job 1 Job 4 Job 3

Core 9 Job 4

Core 10 Job 4

Core 11 Job 4

Core 12 Job 4

Core 13 Job 4

Core 14 Job 4

Core 15 Job 4

Core 16 Job 4

This is what users often are expecting!
Ensure with ‘--exclusive’.

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 94

Tips & Tricks:

Exclusive Jobs: Not Always Useful

Node 1 Node 2 Node 3

Core 1 Job 1 Job 2

Core 2 Job 1 Job 2

Core 3 Job1 Job 2

Core 4 Job 1 Job 2

Core 5 Job 1 Job 3

Core 6 Job 1 Job 3

Core 7 Job 1 Job 3

Core 8 Job 1 Job 3

Core 9

Core 10

Core 11

Core 12

Core 13

Core 14

Core 15

Core 16

16 new jobs requesting one core each

(exclusive mode)

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 95

Tips & Tricks:

Exclusive vs. Non-exclusive Jobs

Node 1 Node 2 Node 3

Core 1 Job 1 Job 4 Job 2

Core 2 Job 1 ----- Job 2

Core 3 Job1 ----- Job 2

Core 4 Job 1 ----- Job 2

Core 5 Job 1 ----- Job 3

Core 6 Job 1 ----- Job 3

Core 7 Job 1 ----- Job 3

Core 8 Job 1 ----- Job 3

Core 9 -----

Core 10 -----

Core 11 -----

Core 12 -----

Core 13 -----

Core 14 -----

Core 15 -----

Core 16 -----

This might or might not

be the desired behavior!

Node 1 Node 2 Node 3

Core 1 Job 1 Job 4 Job 2

Core 2 Job 1 Job 5 Job 2

Core 3 Job1 Job 6 Job 2

Core 4 Job 1 Job 7 Job 2

Core 5 Job 1 Job 8 Job 3

Core 6 Job 1 Job 3

Core 7 Job 1 Job 3

Core 8 Job 1 Job 3

Core 9 Job 9 Job 14

Core 10 Job 10 Job 15

Core 11 Job 11 Job 16

Core 12 Job 12 Job 17

Core 13 Job 13 Job 18

Core 14 Job 19

Core 15

Core 16

This is what users often are expecting!

Ensure by omitting ‘--exclusive’.

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 96

Tips & Tricks:

Resource requests

Possible effects of too little resources requested:

• Runs into time limit (job will be SIGTERM’inated, then SIGKILL’ed)

• Job crashes (e.g. SEGMENTATION FAULT due to “insufficient memory”

or similar problems)

• Jobs (and thus your scientific project) takes „forever“

Possible effects of too much resources requested:

• Blocked cores remaining unused

• Longer queue (pending) times!

• Resources are accounted on your core*h budget, yet not fully used

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 97

Tips & Tricks:

Looking over a job’s shoulder

How to see how a job runs en detail, eg. to debug it?

While running a batch job of yours, you are entitled to log in on the

executing compute node.

• run squeue –t RUNNING to determine your own running jobs and list

their executing compute nodes (last column „NODELIST“)

• from a login node, run ssh <name_of_executing_CN> (or

srun --pty --jobid=… /bin/bash) to „hop“ on the compute node

• then, use your favorite linux commands like „top“ / „htop“ (or

„nvidia-smi“ on GPU nodes) to see what resources your job uses

and in what way
Even syscall tracing: strace –p <your job‘s PID> is possible.

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 98

Tips & Tricks:

Pending Jobs

My jobs are pending – when will they start?

Depending on

• priority (used resources up to now, see “csreport”)

• required run time (especially when targeting the “long” queue!)

• available compute nodes (w.r.t “features” like GPUs)

your jobs might remain in “pending” state for quite a long time.

You can ask the scheduler as to when it deems your jobs startable:

squeue --start

Since the scheduler doesn’t touch all pending jobs in every scheduling cycle, even

this estimation might take some time to return something other than “N/A”.

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 99

Exit Code
… is a program’s only way of telling its parent process about
success or failure – how to preserve it for Slurm

#!/bin/bash

#SBATCH …

echo "This is Job $SLURM_JOB_ID"

module purge

module load gcc/X.Y openmpi/X.Y

srun /my/scientific/program …

EXITSTATUS=$?

mv resultFile /path/to/my/resultFiles/

rm *.tmp

echo “Job $SLURM_JOB_ID ended at $(date).”

exit $EXITSTATUS

just only one “post

processing” line would

cover up the exit code

of your scientific

program!

… if you do not save

it like here with eg.
EXITSTATUS=$?

Not doing so would yield jobs being falsely

reported as COMPLETED, masking any

failures of your real “payload” program.

SLURM has no means to

identify THIS line as your

job script’s most

important command!

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 100

Tips & Tricks:

Interactive Jobs

… are requested via
srun -n1 -t10 --mem-per-cpu=200 --pty /bin/bash

start an interactive job

• one task/process

• for at most 10 minutes

• with at most 200 MBytes of RAM per core

• allocate a pseudo terminal

• command to run on the compute node

… but:

• has to wait until resources are free (can take seconds/minutes/hours…)

• are killed inevitably as soon as time is up or RAM is exceeded

• should be used only for testing / debugging of special cases, eg.

• accelerator jobs (NVidia GPUs: add --gres=gpu:1)

• when the login nodes do not evoke the problem, eg. due to being

too different from the compute nodes

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 101

Tips & Tricks:

Job Arrays

… are the most efficient way of submitting many similar tasks, and do not choke the scheduler as

much as individual jobs would do!

Whenever you’re tempted to submit more than ~20 distinct but similar jobs, always consider using

a job array instead!

Additional Benefit: you avoid the TU being blamed as mail spammer and our mail servers from being

blacklisted! While each job creates separate mails, a job array’s subtasks do not (at

least not by default).

Use Cases:

1. The same scientific program should run

a. with the same input, but X times with a different parameter set (“parameter study”)

b. with the same parameters, but on X different input files (“high throughput computing”)

2. I have to run a lot of independent subtasks, not communicating with or dependent on each other

3. My simulation takes way longer than 24h, but waiting for a 7-day slot (“long” queue) takes too much time

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 102

Tips & Tricks:

Job Arrays

How to use the Job Array feature of SLURM:

#!/bin/bash

#SBATCH -J testArr

#SBATCH -a 1-8%2

#SBATCH -e /home/<tu-id>/some/path/%x.err.%A_%a

#SBATCH -o /home/<tu-id>/some/path/%x.out.%A_%a

#SBATCH -n 1

#SBATCH --mem-per-cpu=1000

#SBATCH -t 00:02:00

echo "This is Job $SLURM_ARRAY_JOB_ID, Index: $SLURM_ARRAY_TASK_ID"

myProgram --parameters=$SLURM_ARRAY_TASK_ID.params --input=same.in

or

myProgram --parameters=same.params --input=img$SLURM_ARRAY_TASK_ID.jpg

Start index

End index

Number of

elements that

may run in

parallel

(optional)

= UC 1a

= UC 1b

Job ID (same for

all array elements)

Index of the

current array

element

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 103

Tips & Tricks:

Job Arrays - Details

High Throughput Computing: independent subtasks

 for eg. 25 subtasks not specified as a job array, SLURM would wait for 25 nodes to be free at the same

time.

☺ Specifying the 25 subtasks as an “#SBATCH –a 1-25” array (without a limiting %#), SLURM would run

as much subtasks in parallel as there are nodes free: your subtasks can “slip” onto free nodes as they

become available, without waiting for a set of 25 free nodes!

Chain of jobs: exceeding the maximum runtime limit of 7 days

If your simulation needs eg. ~19 days total runtime and your program

is capable of CPR (checkpoint & restart), you would specify an array with

#SBATCH –a 1-19%1 (telling SLURM to run 19 array tasks sequentially, one after another)

#SBATCH –t 24:00:00 (with 24h runtime each)

That way, you can avoid waiting for the “long” / 7d queue and submit this array into the “24h” class.

This yields a chain of 19 one-day tasks.

While your job’s program will be terminated every 24h, the next array task will pick up the CPR file and

continue to run the simulation where the former array task left off a few minutes before.

UC 2

UC 3

24h

5th

24h

4th

24h

3rd

24h

2nd

24h

1st

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 104

• Questions up to here?

• (Live demo)

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 106

Automatic loading of modules at login

When tempted to automate all your “module load …” in a shell startup file,

only do it after the following check line:

Other Common Issues

my own $HOME/.bashrc

for automation

…

place any output-generating

commands below next check,

if you don’t want to run

into issues with “scp”/“rsync”:

[-z "$PS1"] && return

module load gcc/X.Y openmpi/X.Y

echo “Ready for commands.”

Due to SSH protocol issues, shell

startup files generating STDOUT or

STDERR are known to cause issues

with “scp” and similar tools.

With this check line, their “login” ends at

“return”, so these do not see any output

(only shown during interactive logins).

verbose & chatty

(output-generating)

commands

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 107

Other Common Issues

▪ Only software that is designed to run in parallel will run in parallel.

• Multithreading / OpenMP: Only inside a single node: -c 24 | 48 | 96 | 104

• MPI: inside a node and/or across several nodes: -n 24 | 48 | 96 | ... | … | …

▪ Licenses:

• For commercial software (e.g. Ansys), your institute has to hold licenses.

• For other software (eg. MATLAB), TU Da has acquired a campus license.

Otherwise, you must not use the software.

▪ Account:

• Do not pass on your account to other persons (e.g. by sharing the

password or ssh-keys). Otherwise, your account will be locked due to

violating the user regulations – possibly your whole TU-ID/TUDa access, too!

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 108

User Support

➢ Video Consultation

every Wednesday 10am – 11am as a Zoom meeting:

Meeting-ID: 665 7163 2291

Kenncode: 113329

➢ Office Hours

in presence – every first Wednesday (monthly) between

9:30am and 3pm:

Alexanderstraße 2, 3rd Floor, Room 205, 213 und 214

➢ Contact us via hhlr@hrz.tu-darmstadt.de

http://
mailto:hhlr@hrz.tu-darmstadt.de

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 109

HKHLR: the Experts in Parallel Programming

and Optimizing of HPC

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 110

How to Find Information Online

https://www.hrz.tu-darmstadt.de/hlr

https://www.hrz.tu-darmstadt.de/hlr/

11.02.2025 | Introduction to the Lichtenberg High Performance Computer | 111

Coming to an end…

For “homework”, we recommend part 2 of our

Online Quiz:

https://university.quizacademy.io/course/CIWBTC

(Completely anonymous and non-tracking).

	Slide 1: Introduction to the Lichtenberg High Performance Computer
	Slide 2: Introduction to the Lichtenberg High Performance Computer
	Slide 3: Georg-Christoph Lichtenberg 1st July 1742 – 24th February 1799
	Slide 4: Starting point
	Slide 5: How to proceed
	Slide 6: Lichtenberg – A Parallel, Yet Hierarchical System
	Slide 7: Parallelisation (1) Serial vs. Parallel, Process vs. Thread
	Slide 8: Parallelisation (2): Shared and distributed memory
	Slide 9: Parallelisation (3): Scalability
	Slide 10: Parallelisation (4): Scalability – what to gain with more CPU cores?
	Slide 11: Lichtenberg HPC – a tightly coupled cluster of compute nodes
	Slide 12: Energy Efficiency Hot Water Cooling
	Slide 13: Compute Nodes Details on https://www.hrz.tu-darmstadt.de/hlr → Operations → Hardware
	Slide 14: Big-Mem Nodes LB2A1 Details on https://www.hrz.tu-darmstadt.de/hlr → Operations → Hardware
	Slide 15: Big-Mem Nodes LB2A2 Details on https://www.hrz.tu-darmstadt.de/hlr → Operations → Hardware
	Slide 16: Accelerator Nodes LB2A1 Details on https://www.hrz.tu-darmstadt.de/hlr → Operations → Hardware
	Slide 17: Accelerator Nodes LB2A1 Details on https://www.hrz.tu-darmstadt.de/hlr → Operations → Hardware
	Slide 18: Accelerator Nodes LB2A2 Details on https://www.hrz.tu-darmstadt.de/hlr → Operations → Hardware
	Slide 19: Storage Technology
	Slide 20: File Systems
	Slide 21: File System Best Practices
	Slide 22: Backup
	Slide 23: Recap
	Slide 24: … what if not?
	Slide 25: How to proceed
	Slide 26: Project vs. User Account
	Slide 27: Project proposal – classes
	Slide 28: Small Project – 1. Administrative details
	Slide 29: Small Project – 2. Project details
	Slide 30: Small Project – 3. Technical description
	Slide 31: Small Project – 3. Technical description
	Slide 32: Small Project – 3. Technical description
	Slide 33: Small Project – 4. Submission
	Slide 34: Project Review Process
	Slide 35: Final steps
	Slide 36: Approval, and your active projects
	Slide 37: Project memberships
	Slide 38: How to proceed
	Slide 39: How to get access – user regulation
	Slide 40: How to get access – User application / Nutzungsantrag
	Slide 41: Recap of the “paper work”
	Slide 42: Questions?
	Slide 43: Coffee break
	Slide 44: How to proceed
	Slide 45: Remote access
	Slide 46: Login Nodes LB2A1 Details on https://www.hrz.tu-darmstadt.de/hlr → Operations → Hardware
	Slide 47: Login Nodes LB2A2 Details on https://www.hrz.tu-darmstadt.de/hlr → Operations → Hardware
	Slide 48: Purpose of the Login Nodes
	Slide 49: Connecting to the Lichtenberg HPC
	Slide 50: Connecting to the Lichtenberg HPC
	Slide 51: Connecting to the Lichtenberg HPC
	Slide 52: Some Software for Windows Users
	Slide 53: Some Software for Windows Users
	Slide 54
	Slide 55: Operating System
	Slide 57: The Module System*
	Slide 58: The Module System*
	Slide 59: The Module System*
	Slide 60: Other Software
	Slide 61: Python: virtualenv instead of conda
	Slide 62: Python: virtualenv in a batch job
	Slide 63: Use docker containers with apptainer
	Slide 64: Use docker containers with singularity
	Slide 65
	Slide 66
	Slide 67: Batch (Queuing) System
	Slide 68: Computations via batch jobs only
	Slide 69: Shell Script / Job Script
	Slide 70: Job Script … above all, is such a simple shell script (plain text file with UNIX line ends)
	Slide 71: Important Submission Parameters
	Slide 72: Further useful parameters
	Slide 73: Job Script … is a simple shell script with SLURM pragmas (camouflaged as shell comments), using slurm placeholders as %… and in the payload, shell variables as $...
	Slide 74: Submitting a Job and other SLURM Commands
	Slide 75: Problems in Submitting Jobs
	Slide 76: Special Features / Constraints
	Slide 77: Available Features / GRes
	Slide 78: Selecting Features
	Slide 79: Selecting GRes Unlike constraints/features, generic resources allow for more precise specifications of what accelerator(s) a job needs
	Slide 80: Selecting GRes Unlike constraints/features, generic resources allow for more precise specifications of what accelerator(s) a job needs
	Slide 81
	Slide 82
	Slide 83: Tips & Tricks: Applications
	Slide 84: Tips & Tricks: Modules
	Slide 85: -n / --ntasks= The crux of vs. -c / --cpus-per-task=
	Slide 86: Tips & Tricks: Job run time requirements
	Slide 87: Tips & Tricks: Job Script or “commenting comments”
	Slide 88: Tips & Tricks: How do I “size” my Jobs?
	Slide 89: Tips & Tricks: How do I “size” my Jobs?
	Slide 91: Tips & Tricks: Exclusive or Shared
	Slide 92: Tips & Tricks: Dispatching Jobs (assuming a node with just 16 cores)
	Slide 93: Tips & Tricks: Exclusive vs. Non-exclusive Jobs (assuming node with 16 cores)
	Slide 94: Tips & Tricks: Exclusive Jobs: Not Always Useful
	Slide 95: Tips & Tricks: Exclusive vs. Non-exclusive Jobs
	Slide 96: Tips & Tricks: Resource requests
	Slide 97: Tips & Tricks: Looking over a job’s shoulder
	Slide 98: Tips & Tricks: Pending Jobs
	Slide 99: Exit Code … is a program’s only way of telling its parent process about success or failure – how to preserve it for Slurm
	Slide 100: Tips & Tricks: Interactive Jobs
	Slide 101: Tips & Tricks: Job Arrays
	Slide 102: Tips & Tricks: Job Arrays
	Slide 103: Tips & Tricks: Job Arrays - Details
	Slide 104
	Slide 106: Other Common Issues
	Slide 107: Other Common Issues
	Slide 108: User Support
	Slide 109: HKHLR: the Experts in Parallel Programming and Optimizing of HPC
	Slide 110: How to Find Information Online
	Slide 111: Coming to an end…

