HPC IN DEN INGENIEURWISSENSCHAFTEN – VON DER GRUNDLAGENFORSCHUNG BIS HIN ZUR ANWENDUNG

LIGHTHOUSE PROJECTS

Clean Circles

Iron as carbon-free energy carrier in a circular energy economy Interdisciplinary cluster project aiming for Excellence Initiative Partners: KIT, HDA, JvGU, RKU, DLR, MPI (total volume 15 M€) HPC is key to understand the fundamental processes, e.g. in iron-air flames

Experiment, Reactive Flows and Diagnostics Prof. Dreizler

TECHNISCHE

Simulation, Simulation of reactive Thermo-Fluid Systems Prof. Hasse

COLLABORATIVE RESEARCH AT STFS

CRC/TRR 150 Turbulent, chemically reactive, multi-phase flows near walls

The CRC/TRR 150 teams up researchers from **TU Darmstadt** and **Karlsruhe Institute of Technology**.

They aim to advance the fundamental understanding and modelling of chemical kinetics.

At STFS, Flame-Wall Interaction and Boundary Layer Flames are investigated.

The CRC/TRR 129 combines the experience of **TU Darmstadt**, **RWTH Aachen** and **Ruhr-Universität Bochum**.

The focus is on **homogeneous** gas and heterogeneous biomass combustion.

At STFS, the objective is modeling and simulation of the complete Oxy-Fuel combustion system.

TU Darmstadt is one of four **University Technology Centres** (UTC) in Germany.

In Darmstadt, the collaboration between institutes and Rolls-Royce works on **Combustor-Turbine Aerothermal interaction**.

At STFS, the focus of the UTC is **modeling of aero-engine combustion**.

ROLLS-ROYCE UNIVERSITY TECHNOLOGY CENTRE (UTC)

Mechanical Engineering | Simulation of reactive Thermo-Fluid Systems | Prof. Dr.-Ing. Christian Hasse

4

Check out the UTC

FROM COMPLEX TO SIMPLE

BUILDING A DIGITAL HPC TWIN

FULL-ENGINE CONFIGURATION

Global performance metric Point measurements

ENGINE-LIKE CONFIGURATION

Microphone probes

LAB-SCALE MODEL COMBUSTOR

Detailed laser measurements Microphone probes

GENERIC ACADEMIC CONFIGURATION

Analytical models Two-dimensional modeling

THERMOACOUSTIC RESPONSE

GENERIC ACADEMIC CONFIGURATION

RIJKE TUBE

YouTube, NightHawkInLight (2021), Acoustic Energy & Surprising Ways To Harness It. [Link to Full Video]

GENERIC ACADEMIC CONFIGURATION

POSSIBLE MODE SHAPES^[2]

YouTube, NightHawkInLight (2021), Acoustic Energy & Surprising Ways To Harness It. [Link to Video]
YouTube, NightHawkInLight (2021), Fire Driven Sound Waves in a Quartz Tube. [Link to Video]

LAB-SCALE MODEL COMBUSTOR

SFB606 GAS TURBINE MODEL COMBUSTOR

LAB-SCALE MODEL COMBUSTOR

SFB606 GAS TURBINE MODEL COMBUSTOR

Gas Turbine Model Combustor at DLR Stuttgart © DLR

HPC Digital Twin lab-scale, atmospheric burner

[1] Karpowski, et int., Hasse (2022), Proc. ASME Turbo Expo 2022.

ENGINE-LIKE CONFIGURATION

ENGINE-LIKE CONFIGURATION

SCARLET test rig at DLR Cologne © DLR (CC-BY 3.0)

Typical number of cores: 200-1000 Total runtime:

~1 million core hours per acoustic excitation per OP

HPC Digital Twin real injector, engine-like conditions

ENGINE-LIKE CONFIGURATION

CHARACTERISTICS OF SOOT

IMPORTANCE OF SOOT PREDICTION

EXAMPLE nVPM EMISSIONS AT ZURICH AIRPORT

Fleuti (2018), Presentation, Ultrafeinstaubstudien Flughafen Zürich, Flughafen Zürich AG, [Link]

AERO-ENGINE COMBUSTION

FROM COMPLEX TO SIMPLE

BUILDING A DIGITAL HPC TWIN

FULL-ENGINE CONFIGURATION

Global performance metric Point measurements

REAL COMBUSTOR CONFIGURATION

Point measurements Different operating conditions

TURBULENT SOOTING FLAME

Detailed laser measurements Particle size distribution

GENERIC ACADEMIC CONFIGURATION

Analytical models Low-dimensional modeling

DELFT ADELAIDE FLAME III

Qamar et al. (2009), Combust. Flame.
Ferraro, et int., Hasse (2022), Phys. Fluids.

Temperature

 d_p (nm)

Soot number density

[2]

BR710 AERO-ENGINE COMBUSTOR

BR710 AERO-ENGINE COMBUSTOR

Typical number of cores: 200-1000 Total runtime: ~1 million core hours per OP

HYDROGEN COMBUSTION

BUILDING A DIGITAL HPC TWIN

Launch of hydrogen-powered engines until 2035

[1] Airbus (2023), Press release [Link] (accessed: 21.06.2023).

[2] Rolls-Royce plc. (2022), Press release [Link] (accessed: 21.06.2023)

HYDROGEN COMBUSTION

CHALLENGES

Boundary Layer Flashback

Thermo-Diffusive Instabilities

[1] ddd. [2] ddd [3] ddd

HYDROGEN COMBUSTION BOUNDARY LAYER FLASHBACK

Experiment

HPC Digital Twin

HYDROGEN COMBUSTION

CHALLENGES

Boundary Layer Flashback

Thermo-Diffusive Instabilities

[1] ddd. [2] ddd [3] ddd

HYDROGEN COMBUSTION

THERMO-DIFFUSIVE INSTABILITIES

HPC Digital Twin

[1] Beeckmann (2018), PhD Thesis, ITV, RWTH Aachen.

ACKNOWLEDGEMENT

THERMOACOUSTIC

SOOT

HYDROGEN

